Straw Bale Houses - design and material properties

Jørgen Munch-Andersen

Birte Møller Andersen

Danish Building and Urban Research

(Statens Byggeforskningsinstitut)

Research Project

Aim: to demonstrate how straw bale houses can be build as durable and well performing structures

Two part project:

- 1. Material properties
- 2. Design guideline

Supported by the Danish Energy Agency, special programme for environmentally friendly insulation

Material Properties

Thermal insulation properties

Moisture transport and condensation

Settlements

Fire properties
Sound insulation
Working environment

Heat insulation

Two test types

- 1. Thermal conductivity (λ -value) from standard tests
- 2. Direct U-value from guarded hot box test

Thermal conductivity

Material property depending on straw type, straw direction and density. Mineral wool has $\lambda \sim 0.035$ W / mK

Table 1. Thermal conductivity for straw bales according to different sources.

	Density, kg/m3	Thermal conductivity, 1, W/mK			
Reference		Straw parallel	Straw perpendicular		
		to heat flow	to heat flow		
Present study	75	0.057	0.052		
Present study	90	0.060	0.056		
Haus der Zukunft ¹	100		0.038		
Christian et al. (1998)	62 resp. 81	0.082	0.057		
McCabe (1993)	approx. 150	0.060	0.048		
Sandia National Lab. (1994)	90	0.05-0.062	0.05-0.062		

Österreichischen Strohballen-Netzwerk (2000). 2. Unspecified straw direction

U-value

Property of wall, depending mainly on thickness and λ . 200 mm mineral wool gives U \sim 0.18 W / m²K

Table 2. U-value for stuccoed straw bale walls.

Straw orientation	Thickness of straw	Surfaces	U-value, W/m ² K	
Present study ¹				
parallel to heat flow	385 mm	34 + 42 mm stucco	0.208	
perpendicular to heat flow	365 mm	26 + 26 mm stucco	0.196	
Christian et al. (1998)1				
parallel, with cavities	470 mm	Stucco + 13 mm board	0.365	
parallel, without cavities	480 mm	Stucco + 13 mm board	0.2103	
Watts et al. (1995)2, parallel	460 mm	Stucco	0.21	

Guarded hot box test excluding air film resistance. 2. In situ test. 3. Value determined from data in (Oak Ridge National Laboratory, 1998).

U-values from λ-values

Measured for 385 mm straw parallel to heat flow, 75 kg / m^3 with 80 mm clay plaster: U = 0.21 W / m^2 K (excl. air film resistance)

Calculating from λ -measurement:

Heat flow parallel to straw, 75 kg / m^3 : λ = 0.057 W / mK Clay plaster, assumed: λ = 0.8 W / mK 0,39 m straw + 0,08 m plaster => U = 0,15 W / m^2 K

Direct measurement about 50% higher than calculated!

Reasons for difference in U-value

- Convection: American calculations by CFD indicates serious effect, increase U from 0.15 to 0.17
- Intrusion of plaster into straw might reduce effective thickness of straw by some 2 x 10 mm, increase U by 0.01 to 0,18
- Intrusion of plaster in cavities at rounded corners will further decrease effective thickness of straw. Assuming an effective average of 2 x 25 mm changes U to 0.19
- · Difference not explained fully

Conclusions, U-value

Danish standard bales, 450 mm in straw direction and 360 mm perpendicular to straw direction

Design U-values can be taken as:

- Walls with straw parallel to heat flow: U = 0,18 W / m²K
- Low pitch roofs with straw perpendicular to heat flow: U = 0,18 W / m²K (low pitch prevents convection caused by air flow)

Moisture and condensation

Two test types

- Water vapour resistance of plaster and straw
- 2. Hot-cold box

Water vapour resistance

Material property for resistance against water vapour penetration, Z-value. A vapour barrier has $Z \sim 100$

Amount of water transport depends on Z and difference in partial water vapour pressure

Sa	mple Fr	or 40 mm layer	Z, GPa s	m²/kg
			Wet	Dry
1	Clay plaster		1.6	2.4
2	Clay plaster with 5 layer of whitening		1.7	2.4
3	Clay plaster painted with linseed oil		2.6	3.5
4	Clay plaster mixed with linseed oil, 1%		2.5	3.1
5	Lime, coarse (0-4 mm)		2.1	2.2
6	Lime, fine (0-2 mm)		3.0	-
7	Clay plaster mixed with chopped paper, 5%		1.8	-
8	Clay plaster mixed with chopped straw, 30%		1.8	-
9	Clay plaster mixed with cow manure, 25%		1.5	-
10	Clay plaster painted with silicate paint system, four	layers	2.5	-

Hot-cold box

Simulation of winter conditions, 0°C outside, 25° C inside Clay plaster inside, clay and lime plaster outside

Period	Warm si	de			Cold sid	е			Difference
Days	T, °C	p _s , Pa	RH, pct.	p _v , Pa	T, °C	p _s , Pa	RH, pct.	p _v , Pa	Δp_v , Pa
73-102	24,8	3132	46,3	1450	-1,8	526	85,0	447	1003
103-108	25,0	3169	48,0	1521	-1,5	540	83,9	453	1068
110-134	25,3	3245	45,1	1463	1,7	392	88,8	614	822
229-259	25,0	3169	44,0	1394	-1,1	558	83,5	466	928
260-285	24,9	3151	44,8	1412	-1,0	562	84,7	476	936
286-316	24,6	3095	43,5	1346	-1,0	562	86,0	483	863
349-379	24,8	3132	43,2	1353	-1,4	544	85,2	463	890

Settlements of plastered walls Two walls, Relative humidity varied between 50 and 80 % 1. Non-load bearing, normal straw bales (75 kg/m³) 2. Load bearing, 5 kN/m, big bales (125 kg/m³)

Working environment

- High level of organic fine particle dust, severely affected by in-door work
- Low level of fungi thanks to fresh and yellow straw

BY og BYG

Mussel shells as floor slab insulation

Thermal conductivity and capillary suction measured for whole shells, crushed shells and the coarse fraction of the crushed shells.

 $\lambda \sim 0,12 \text{ W/mK}$

Capillary suction height < 25 mm

BY og BYG

Conclusions

- Straw bale houses can fulfil all requirements to houses
 - · especially fire regulations
- Detailing very important to avoid damage from water vapour, moisture and rain
 - · Inside must be airtight
 - External cladding by eg. boards reduces sensitivity to maintenance
- · Heat insulation only fair
 - · Methods to reduce convection should be studied